PAPERS FROM THE FIFTH
SCANDINAVIAN CONFERENCE
OF COMPUTATIONAL
LINGUISTICS

Helsinki, December 11-12, 1985

Edited by Fred KARLSSON

PUBLICATIONS
No. 15
1986

University of Helsinki
Department of General Linguistics
Hankoniit 11-13
SF-00100 HELSINKI
FINLAND
2. Mental Representations

The text representations are derived from the primary mental lexicon, which is a storage system for mental representations of concepts. The mental lexicon is organized hierarchically, with concepts at the top levels and their corresponding representations at the bottom levels. Concepts are linked to their representations through a network of associations, allowing for the retrieval of information in a meaningful and efficient manner.

The mental lexicon is also responsible for the generation of new representations, which can then be stored in memory for future reference. This process is facilitated by the use of inferences and analogies, which allow for the creation of new mental representations that are similar to existing ones.

The mental lexicon is also used to support problem-solving and decision-making tasks. By accessing and manipulating mental representations, individuals are able to reason about complex situations and make informed choices.

In summary, the mental lexicon is a crucial component of mental representation and plays a vital role in encoding, retrieving, and generating mental representations.
SURFACE MORPHOLOGY
INFLUENCE OF FUNCTIONAL GROUPS

TEXT: (A) "The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.

"The exact role of water in

processing is thus:

In most cases, the role of water in

controlling and guiding the process of

hydrolysis is significant. However, in cases

where the reaction is not controlled by

hydrolysis but rather by other factors,

such as the presence of a catalyst, the

role of water is not as significant.

Alcohols, for example, are not

hydrolyzed by water, but they are

reactive toward other functional groups.
ALL PATTERN RULES

The pattern rules are designed to capture the core aspects of the text, focusing on the patterns that emerge from the data. These rules are not exhaustive but are meant to provide a framework for understanding the text. The rules are:

1. **Pattern Rule**: Each pattern rule is a statement that captures a specific aspect of the text. These rules are designed to be as specific as possible, focusing on the core aspects of the text.

2. **Word Forms**: The word forms are the basic units of the text. These forms are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

3. **Pattern Rules (predicting stems) - **

4. **Phoneme**: The phonemes are the basic units of the text. These phonemes are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

5. **Example**: Each example is a specific instance of a pattern rule. These examples are designed to illustrate the pattern rule in action.

6. **Pattern Rule**: Each pattern rule is a statement that captures a specific aspect of the text. These rules are designed to be as specific as possible, focusing on the core aspects of the text.

7. **Word Forms**: The word forms are the basic units of the text. These forms are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

8. **Pattern Rules (predicting stems) - **

9. **Phoneme**: The phonemes are the basic units of the text. These phonemes are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

10. **Example**: Each example is a specific instance of a pattern rule. These examples are designed to illustrate the pattern rule in action.

The pattern rules are designed to capture the core aspects of the text, focusing on the patterns that emerge from the data. These rules are not exhaustive but are meant to provide a framework for understanding the text. The rules are:

1. **Pattern Rule**: Each pattern rule is a statement that captures a specific aspect of the text. These rules are designed to be as specific as possible, focusing on the core aspects of the text.

2. **Word Forms**: The word forms are the basic units of the text. These forms are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

3. **Pattern Rules (predicting stems) - **

4. **Phoneme**: The phonemes are the basic units of the text. These phonemes are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

5. **Example**: Each example is a specific instance of a pattern rule. These examples are designed to illustrate the pattern rule in action.

6. **Pattern Rule**: Each pattern rule is a statement that captures a specific aspect of the text. These rules are designed to be as specific as possible, focusing on the core aspects of the text.

7. **Word Forms**: The word forms are the basic units of the text. These forms are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

8. **Pattern Rules (predicting stems) - **

9. **Phoneme**: The phonemes are the basic units of the text. These phonemes are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

10. **Example**: Each example is a specific instance of a pattern rule. These examples are designed to illustrate the pattern rule in action.

The pattern rules are designed to capture the core aspects of the text, focusing on the patterns that emerge from the data. These rules are not exhaustive but are meant to provide a framework for understanding the text. The rules are:

1. **Pattern Rule**: Each pattern rule is a statement that captures a specific aspect of the text. These rules are designed to be as specific as possible, focusing on the core aspects of the text.

2. **Word Forms**: The word forms are the basic units of the text. These forms are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

3. **Pattern Rules (predicting stems) - **

4. **Phoneme**: The phonemes are the basic units of the text. These phonemes are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

5. **Example**: Each example is a specific instance of a pattern rule. These examples are designed to illustrate the pattern rule in action.

6. **Pattern Rule**: Each pattern rule is a statement that captures a specific aspect of the text. These rules are designed to be as specific as possible, focusing on the core aspects of the text.

7. **Word Forms**: The word forms are the basic units of the text. These forms are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

8. **Pattern Rules (predicting stems) - **

9. **Phoneme**: The phonemes are the basic units of the text. These phonemes are used to capture the core aspects of the text, focusing on the patterns that emerge from the data.

10. **Example**: Each example is a specific instance of a pattern rule. These examples are designed to illustrate the pattern rule in action.
yet it was realized that the concept of the
"patent" for an invention was not enough to
protect the patentee's rights.

The patent system was developed to ensure
that the inventors who created new inventions
were rewarded for their efforts. The patent
system provided a legal framework for
inventors to protect their inventions and
prevented others from making and using
their inventions without permission.

The patent system works by granting an
exclusive right to the inventor for a limited
time. This exclusive right allows the
inventor to control the making, using,
and selling of the invention for a
specified period of time.

However, the patent system has
its limitations. First, not all
inventions are granted patents.
In order to be eligible for a
patent, the invention must
be new, non-obvious, and
useful. Second, the patent
right is limited in time. After
the expiration of the patent,
anyone can use, make, or sell
the invention.

Despite these limitations, the
patent system continues to
play a vital role in promoting
innovation and encouraging
individuals to invest in new
ideas. The patent system
provides incentives for
inventors to create and
invent, knowing that their
new ideas will be protected
for a certain period of time.

In conclusion, the patent
system is a valuable tool for
promoting innovation and
encouraging inventors to
create new and useful
inventions. However, it is
important to note that the
patent system has limitations,
and not all inventions are
eligible for a patent. Despite
these limitations, the patent
system remains a critical
aspect of the legal framework
that supports innovation.
The full description of the text on the page is not legible due to the image quality. It appears to contain a diagram and some text that is not clearly visible. The text seems to be discussing a network diagram and some related concepts or theories. However, without clearer visibility, it is not possible to provide a meaningful transcription.
the development of morphological processing as can be seen in the example of the morphological processing at the beginning of the task. This is counterbalanced by the use of the task словам, the task is a demanding one. The use of the morphological processing at the beginning of the task словам, the task is a demanding one.