
3

C H A P T E R 1

A brief tutorial
1.1 What is XSLT (and XSL, and XPath)? 3
1.2 A simple XSLT stylesheet 8
1.3 More element and attribute manipulation 13
1.4 Summing up the tutorial 16

1.1 WHAT IS XSLT (AND XSL, AND XPATH)?
Extensible Stylesheet Language Transformations (XSLT) is a language that lets you
convert XML documents into other XML documents, into HTML documents, or
into almost anything you like. When you specify a series of XSLT instructions for
converting a class of XML documents, you do so by creating a “stylesheet,” an XML
document that uses specialized XML elements and attributes that describe the
changes you want made. The definition of these specialized elements and attributes
comes from the World Wide Web Consortium (W3C), the same standards body
responsible for XML and HTML.

Why is XSLT necessary? XML’s early users were excited about their new ability
to share information, but they gradually realized that sharing this information often
assumed that both sharing parties used the same schema or DTD—a lot to assume.
Assembling a schema that both parties could agree on was a lot of trouble, especially
if they didn’t need to exchange information often. XSLT solves this problem by pro-
viding an easy, W3C-sanctioned way to convert XML documents that conform to one
schema into documents that conform to others, making information much easier to
pass back and forth between different systems.

4 CHAPTER 1 A BRIEF TUTORIAL

XSLT was originally part of the Extensible Stylesheet Language (XSL). In fact, XSLT
is still technically a part of XSL. The XSL specification describes XSL as a language
with two parts: a language for transforming XML documents and an XML vocabu-
lary for describing how to format document content. This vocabulary is a collection
of specialized elements called “formatting objects,” which specify page layout and
other presentation-related details about the text marked up with these elements’ tags:
font family, font size, margins, line spacing, and other settings.

Because a powerful formatting language should let you rearrange your input
document in addition to assigning these presentation details, the original XSL spec-
ification included specialized elements that let the stylesheet delete, rename, and reor-
der the input document’s components. As they worked on this collection of elements,
the W3C XSL Working Group saw that it could be useful for much more than con-
verting documents into formatting object files—that it could convert XML docu-
ments into almost anything else. They called this transformation language XSLT and
split it out into its own separate specification, although the XSL specification still said
that everything in the XSLT specification was considered to be part of the XSL spec-
ification as well.

One great feature of XSLT is its ability, while processing any part of a document,
to grab information from any other part of that document. The mini-language devel-
oped as part of XSLT for specifying the path through the document tree from one part
to another is called “XPath.” XPath lets you say things like “get the revisionDate
attribute value of the element before the current element’s chapter ancestor ele-
ment.” This ability proved so valuable that the W3C also broke XPath (see figure 1.2)
out into its own specification so that other W3C specifications could incorporate this
language. For example, an XLink link can use an XPath expression as part of an
XPointer expression that identifies one end of a link.

Figure 1.1

XSLT stylesheets can automate the

conversion of the same input into

multiple output formats.

WHAT IS XSLT (AND XSL, AND XPATH)? 5

1.1.1 XSLT and alternatives

Other ways exist for transforming XML documents. These options fall into two
categories:

• XML-related libraries added to general purpose programming languages such as
Java, Perl, Visual Basic, Python, and C++

• languages such as Omnimark and Balise designed specifically for manipulating
XML (and, typically, SGML) documents

So why use XSLT? For one thing, it’s a standard. This doesn’t necessarily make XSLT
a good language, but it does mean that multiple vendors worked on it together, each
contributed to its design, and each has committed to supporting it in their products.
XSLT wasn’t invented by some guy who started a company to sell it and then added
and dropped features and platform support over the years as it fit the needs of the
company’s bigger customers. XSLT’s features and platform support reflect a broad
range of interests, and the wide availability of open source implementations make it
easy for most programmers to put together their own customized XSLT processors
with any features they may want to add.

Being a W3C standard also means that XSLT fits in with other W3C standards
and that future W3C standards will also fit in with it. The phrase “standards-driven”
is nearing tiresome buzzword status these days as more products take advantage of
XML; unfortunately, many ignore important related W3C standards. For example,
one XML transformation product has various specialized element types whose names
you’re not allowed to use for your own element types. If this product declared and
used a namespace for their specialized element types they wouldn’t need to impose
such arbitrary constraints on your application development—for example, if they
declared a URI and a prefix for this set of element and attribute names, and then used
that prefix in the document with those names to prevent an XML parser from confus-
ing them with other elements and attributes that may have the same name.

Figure 1.2 The W3C released the first Working Draft of XSL in August 1998,

split XSLT out into its own Working Draft in April of 1999, then split XPath

out from XSLT into its own working Draft in July 1999.

6 CHAPTER 1 A BRIEF TUTORIAL

Another advantage of XSLT over other specialized XML transformation languages
is that a series of XSLT document transformation instructions are themselves stored as
an XML document. This gives XSLT implementers a big head start because they can
use one of the many available XML parsers to parse their input. It also means that
developers learning XSLT syntax don’t need to learn a completely new syntax to write
out their instructions for the XSLT processor. They must just learn new elements and
attributes that perform various tasks.

1.1.2 Documents, trees, and transformations

Speaking technically, an XSLT transformation describes how to transform a source tree
into a result tree. Informally, we talk about how XSLT lets you transform documents into
other documents, but it’s really about turning one tree in memory into another one. Why?

Most XSLT processors read a document into the source tree, perform the transfor-
mations expressed by the XSLT stylesheet to create a result tree, and write out the result
tree as a file, with the net result of converting an input XML document into an output
document. Nothing in the XSLT specification requires these processors to read and write
disk files; by leaving files and input/output issues out of it, the spec offers more flexibility
in how XSLT is used. Instead of an XML file sitting on your hard disk, the input may
come from a Document Object Model (DOM) tree in memory or from any process
capable of creating a source tree—even another XSLT transformation whose result tree
is the source tree for this new transformation. (The DOM is a W3C standard for rep-
resenting and manipulating a document as a tree in memory.) How would you tell a pro-
cessor to treat the result tree of one transformation as the source tree of another? See the
documentation for your XSLT processor. As I said, the XSLT spec deliberately avoids
input and output issues, so that’s up to the people who designed each processor.

Similarly, the processor doesn’t have to write out the result tree as a disk file, but
can store it as a DOM tree, pass it to a new XSLT stylesheet that treats that result tree
as the source tree of a new transformation to perform, or pass it along for use by
another program via some means that hasn’t been invented yet. Figure 1.3 shows these
relationships when using XSLT to create an HTML file from a poem document type.

Figure 1.3

Document trees, XSLT,

and XSLT processors

WHAT IS XSLT (AND XSL, AND XPATH)? 7

Dealing with an input tree instead of an input document also gives you an important
advantage that XML developers get from DOM trees: at any given point in your pro-
cessing, the whole document is available to you. If your program sees a word in the
document’s first paragraph that’s defined in the glossary at the end, it can go to the
glossary to pull out the term’s definition. Using an event-driven model such as the
Simple API for XML (SAX) to process a document instead of a tree-based model like
XSLT uses, your program would process each XML element as it read the element in.
While doing this, if you want to check some information near the end of your docu-
ment when reading an element in the beginning, you need to create and keep track of
data structures in memory, which makes your processing more complicated.

��� When a discussion of XSLT issues talks about a source tree and a result tree,
you can think of these trees as temporary representations of your input and
output documents.

Not all nodes of a document tree are element nodes. A diagram of the tree that would
represent this document

<?xml-stylesheet href="article.xsl" type="text/xsl"?>

<article>
 <!-- here is a comment -->

 <title author="bd">Sample Document</title>
 <para>My 1st paragraph.</para>

 <para>My 2nd paragraph.</para>
</article>

shows that there are nodes for elements, attributes, processing instructions, com-
ments, and the text within elements. (There are also nodes for namespaces, but this
document has no namespace nodes.)

It’s easy to match up the parts of the tree with the parts of the corresponding docu-
ment, except that it might appear that the document has too many “text” nodes. The
tree diagram shows text between the comment and the title element, and text

Figure 1.4 A document tree with several different node types

8 CHAPTER 1 A BRIEF TUTORIAL

between the two para elements; where is this text in the document? You can’t see this
text, but it’s there: it’s the carriage returns that separate those components of the doc-
ument. If the two para elements had been written as one line, like this,

<para>My 1st paragraph.</para><para>My 2nd paragraph.</para>

no text node would exist between those two elements, and you wouldn’t see a text
node between them in the tree diagram. (See section 6.11, “Whitespace: preserving
and controlling,” page 229 for more on this.)

You also might wonder why, if article is the root element of the document,
it’s not the root node of the tree. According to XSLT’s view of the data (its “data
model”), the root element is a child of a predefined root node of the tree (shown as a
slash in the diagram) because it may have siblings. In the example above, the process-
ing instruction is not inside the article element, but before it. It is therefore not a
child of the article element, but its sibling. Representing both the processing
instruction and the article element as the children of the tree’s root node makes
this possible.

1.2 A SIMPLE XSLT STYLESHEET

An XSLT transformation is specified by a well-formed XML document called a
stylesheet. The key elements in a stylesheet are the specialized elements from the
XSLT namespace. (A namespace is a unique name for a given set of element and
attribute names. Their use is usually declared in an XML document’s document ele-
ment with a short nickname that the document uses as a prefix for names from that
namespace.) When an XSLT processor reads one of these stylesheets, it recognizes
these specialized elements and executes their instructions.

XSLT stylesheets usually assign “xsl” as the prefix for the XSLT namespace (iron-
ically, XSL stylesheets usually use the prefix “fo” to identify their “formatting
objects”), and XSLT discussions usually refer to these element types using the “xsl”
prefix. This way, when something refers to the xsl:text or xsl:message ele-
ments you can assume that they mean the text and message element types from the
XSLT namespace and not from somewhere else.

An XSLT stylesheet doesn’t have to use “xsl” as the namespace prefix. For exam-
ple, if the stylesheet below began with the namespace declaration

xmlns:harpo="http://www.w3.org/1999/XSL/Transform"

the stylesheet’s XSLT elements would need names like harpo:text and harpo:
message for an XSLT processor to recognize them and perform their instructions.

The following stylesheet demonstrates many common features of an XSLT stylesheet.
It’s a well-formed XML document with a root element of xsl:stylesheet. (You can
also use name xsl:transform for your stylesheet’s root element, which means the
same thing to the XSLT processor.):
<!-- xq15.xsl: converts xq16.xml into xq17.xml -->

A SIMPLE XSLT STYLESHEET 9

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:template match="year">

 <vintage>
 <xsl:apply-templates/>

 </vintage>
 </xsl:template>

 <xsl:template match="price">

 </xsl:template>

 <!-- Copy all the other elements and attributes, and text nodes -->
 <xsl:template match="*|@*|text()">

 <xsl:copy>
 <xsl:apply-templates select="*|@*|text()"/>

 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

1.2.1 Template rules

An XSLT stylesheet has a collection of template rules. Each template rule has a pat-
tern that identifies the source tree nodes to which the pattern applies and a template
that is added to the result tree when the XSLT processor applies that template rule to
a matched node.

In a stylesheet document, the template rules that comprise a stylesheet are repre-
sented as xsl:template elements; the stylesheet above has three. The value of each
xsl:template element’s match attribute is the pattern that gets matched against
source tree nodes. The element’s content—that is, everything between its start- and end-
tag—is the template that gets added to the result tree for each source tree node that cor-
responds to the match pattern. An xsl:template element essentially tells the XSLT
processor, “as you go through the source tree, when you find a node of that tree whose
name matches the value of my match attribute, add my contents to the result tree.”

For example, the first template rule in
the preceding stylesheet tells the XSLT
processor what to do when it sees a year
element node as the child of another node
in the source tree. (The “year” attribute
value is actually an abbreviation of
“child::year.”) The template rule has one element as its template to add to the result
tree: a vintage element. This element contains an xsl:apply-templates ele-
ment that tells the processor to apply any relevant templates to the children of the
matched element node (in this case, year). The ultimate result of this template is the
contents of the input year element surrounded by vintage tags—in effect, renam-
ing the source tree’s year element to a vintage element for the result tree.
Figure 1.5 shows where the pattern and template are in one example of a template rule.

Figure 1.5 The two parts of a template rule

10 CHAPTER 1 A BRIEF TUTORIAL

The specialized elements in a template from the XSLT namespace are sometimes
called “instructions,” because they are instructions to the XSLT processor to add some-
thing to the result tree. What does this make the elements in the template that don’t use
the “xsl” namespace prefix, such as the vintage element? The stylesheet is a legal, well-
formed XML document, and the vintage element is an element in that stylesheet.
Because this element is not from the XSLT namespace, the XSLT processor will pass it
along just as it is to the result tree. In XSLT, this is known as a “literal result element.”

Like all template rules, the second xsl:template rule in the stylesheet on
page 9 tells the XSLT processor “if you find a source tree node whose name matches
the value of my match attribute, add my contents to the result tree.” The string
“price” is the pattern to match, but what are the template’s contents? There are no con-
tents; it’s an empty element. So, when the XSLT processor sees a price element in
the source tree, the processor will add nothing to the result tree—in effect, deleting
the price element.

Because the stylesheet is an XML document, the template rule would have the
same effect if it were written as a single-tag empty element, like this:

<xsl:template match="price"/>

XSLT has other ways to delete elements when copying a source tree to a result tree,
but a template rule with no template is the simplest.

Unlike the first two template rules, the third one is not aimed at one specific ele-
ment type. It has a more complex match pattern that uses some XPath abbreviations
to make it a bit cryptic but powerful. The pattern matches any element, attribute, or
text node, and the xsl:copy and xsl:apply-templates elements copy any
element, attribute, or text node children of the selected nodes to the result tree. Actu-
ally, the pattern doesn’t match any element—an XSLT processor uses the most specific
template it can find to process each node of the source tree, so it will process any
year and price elements using the stylesheet’s templates designed to match those
specific tree nodes. Because the processor will look for the most specific template it
can find, it doesn’t matter whether the applicable template is at the beginning of the
stylesheet or at the end—the order of the templates in a stylesheet means nothing to
an XSLT processor.

��� If more than one xsl:template template rule is tied for being most ap-
propriate for a particular source tree node, the XSLT processor may output
an error message or it may just apply the last one to the node and continue.

The values of all of the xsl:template elements’ match attributes are considered
“patterns.” Patterns are like XPath expressions that limit you to using the child and
attribute axes, which still gives you a lot of power. (see chapter 2, “XPath,” on
page 23, for more on axes and the abbreviations used in XPath expressions and pat-
terns.) The “year” and “price” strings are match patterns just as much as “*|@*|text()”
is, even though they don’t take advantage of any abbreviations or function calls.

A SIMPLE XSLT STYLESHEET 11

That’s the whole stylesheet. It copies a source tree to a result tree, deleting the
price elements and renaming year elements to vintage elements. For example,
the stylesheet turns this wine element
<wine grape="chardonnay">
 <product>Carneros</product>

 <year>1997</year>
 <price>10.99</price>

</wine>

into this:

<?xml version="1.0" encoding="utf-8"?>

<wine grape="chardonnay">
 <product>Carneros</product>

 <vintage>1997</vintage>

 </wine>

Although the price element was deleted, the carriage returns before and after it
were not, which is why the output has a blank line where the price element had
been in the input. This won’t make a difference to any XML parser.

This is not an oversimplified example. Developers often use XSLT to copy a doc-
ument with a few small changes such as the renaming of elements or the deletion of
information that shouldn’t be available at the document’s final destination.

1.2.2 Running an XSLT processor

The XSLT specification intentionally avoids saying “here is how you apply stylesheet
A to input document B in order to create output document C.” This leaves plenty of
flexibility for the developers who create XSLT processors. The input, output, and
stylesheet filenames might be entered in a dialog box; or they might be entered at a
command line; or they might be read from a file.

Many XSLT processors are designed to give a range of options when identifying
the inputs and outputs. Some are programming libraries which you can invoke from a
command line or call from within a program. For example, an XSLT processor supplied
as a Java class library often includes instructions for using it from a Windows or Linux
command line, but its real power comes from your ability to call it from your own Java
code. This way, you can write a Java program that gets the input, stylesheet, and output
filenames either from a dialog box that you design yourself, from a file sitting on a disk,
or from another XML file that your application uses to control your production pro-
cesses. Your program can then hand this information to the XSLT processor.

In fact, the input, stylesheet, and output don’t even have to be files. Your program
may create them in memory or read them from and write them to a process commu-
nicating with another computer. The possibilities are endless, because the input and
output details are separate from the transformation.

One example of a Java library that you can use from the command line or as part
of a larger Java application is Xalan (pronounced “Zalan”). This XSLT processor was

12 CHAPTER 1 A BRIEF TUTORIAL

written at IBM and donated to the Apache XML project (http://xml.apache.org). To
run release 2.0 of this particular XSLT processor from the command line with an input
file of winelist.xml, a stylesheet of winesale.xsl, and an output file of winesale.xml, enter
the following as one line (to fit on this page, the example below is split into two lines):

java org.apache.xalan.xslt.Process -in winelist.xml
 -xsl winesale.xsl -out winesale.xml

(This assumes that the appropriate Java libraries and system paths have been set up;
directions come with each Java processor.) For examples of how to run other XSLT
processors, see appendix A, “XSLT quick reference” on page 259.

1.2.3 An empty stylesheet

What would an XSLT processor do with a stylesheet that contained no template
rules? In other words, what effect would an empty stylesheet, such as the following,
have on an input document?

<!-- xq21.xsl: converts xq22.xml into xq23.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"/>

XSLT has several built-in default templates that tell the XSLT processor to output the
text content (or, in XML terms, the PCDATA) of the elements, leaving out the
attributes and markup. For example, the processor would turn this

<winelist date="20010626">

<wine grape="chardonnay">
 <product>Carneros</product>

 <year>1997</year>
 <price>10.99</price>

</wine>
</winelist>

into this:

<?xml version="1.0" encoding="UTF-8"?>

 Carneros
 1997

 10.99

Figure 1.6

The XSLT processor reads an input XML file and

an XSLT stylesheet and outputs another file

based on the stylesheet’s instructions.

MORE ELEMENT AND ATTRIBUTE MANIPULATION 13

��� An XSLT processor’s default behavior adds an XML declaration as well.
This can be overridden with the optional xsl:output element if you
want to create HTML, plain text, or other non-XML output.

The built-in templates also tell the XSLT processor to apply any relevant templates to
the children of the elements being processed. (Otherwise, when the wine-list ele-
ment in the above example gets processed, no reason would exist for the XSLT pro-
cessor to do anything with the wine element.) If the stylesheet has no template for
one of the children, the most appropriate template for that child element may be the
same built-in template that the processor applied to the child’s parent. The XSLT
processor will do the same thing to the child: add any character data nodes to the
result tree and apply the most appropriate templates to any grandchildren elements.

1.3 MORE ELEMENT AND ATTRIBUTE MANIPULATION

In our first stylesheet, we saw that an xsl:apply-templates element with no
attributes tells the XSLT processor to apply any relevant templates to all the matched
node’s children. By using this element type’s select attribute, you can be pickier
about exactly which children of a node should be processed and in what order.

For example, this stylesheet
<!-- xq25.xsl: converts xq26.xml into xq27.xml -->

<xsl:template match="wine">
 <wine>

 <price><xsl:apply-templates select="price"/></price>
 <product><xsl:apply-templates select="product"/></product>

 </wine>
</xsl:template>

will turn this XML element
<wine grape="chardonnay">
 <product>Carneros</product>

 <year>1997</year>
 <price>10.99</price>

</wine>

into this:
<wine>
 <price>10.99</price>

 <product>Carneros</product>
</wine>

The stylesheet performs two important operations on this element:

• It moves the price element before the product element.

• It deletes the year element.

The first technique that we saw for deleting an element—using an empty template
for that element type—is often simpler than adding xsl:apply-templates ele-
ments for each of an element’s children (except the ones you want to delete). If you’re

14 CHAPTER 1 A BRIEF TUTORIAL

reordering the children anyway, as with the preceding example, omitting an
xsl:apply-templates element for the elements in question can be an easier
way to delete them.

1.3.1 Manipulating attributes

We’ve seen how to delete and rename elements. How do you delete and rename
attributes? For example, how would you delete the following wine element’s price
attribute and rename its year attribute to vintage?
<wine price="10.99" year="1997">Carneros</wine>

We want the result to look like this:
<wine vintage="1997">Carneros</wine>

(Because an XML declaration is optional, it won’t make any difference if that shows
up as well.) The first template rule in the following stylesheet makes both of these
changes:

<!-- xq30.xsl: converts xq28.xml into xq29.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:template match="wine">
<wine vintage="{@year}"> <!-- price attribute omitted -->

 <xsl:apply-templates/>
 </wine>

</xsl:template>

<!-- Copy all the other source tree nodes. -->
<xsl:template match="@*|node()">

 <xsl:copy>
 <xsl:apply-templates

 select="@*|node()"/>
 </xsl:copy>

</xsl:template>

</xsl:stylesheet>

Deleting the price attribute was easy: the template just left the attribute out of the
wine start-tag in the template. To rename the year attribute to vintage, the
year start-tag includes the attribute specification vintage="{@year}". The part
between the quotation marks says “put the value of the source tree wine element’s
year attribute here.” The @ character is shorthand for the XPath notation that
means “get the value of the attribute with this name,” and the curly braces tell the
XSLT processor that the expression they contain is an attribute value template—not a
literal string to appear in the result tree exactly as shown, but an expression to be eval-
uated and replaced with the result of the evaluation. If this attribute specification had
said vintage="{2+2}", the XSLT processor would have added vintage="4" to
the result tree. In the example, the processor understands the meaning of @ and plugs
in the appropriate attribute value between the quotation marks on the result tree.

MORE ELEMENT AND ATTRIBUTE MANIPULATION 15

1.3.2 Attribute value templates

You can do a lot with attribute value templates. For example, these templates make
converting elements to attributes simple. The @ character makes it easy to insert an
attribute value where that value will be used as element content in the result. To dem-
onstrate this, let’s convert the grape attribute in the following to a product subele-
ment of the wine element. While we’re at it, we’ll convert the year subelement to a
vintage attribute.
<wine grape="Chardonnay">
 <product>Carneros</product>

 <year>1997</year>
 <price>10.99</price>

</wine>

The result should look like this:
<wine vintage="1997">
 <product>Carneros</product>

 <category>Chardonnay</category>
 <price>10.99</price>

</wine>

The following template converts the grape attribute into a category subelement
by using the @ character, and the message uses the xsl:value-of element to put
each grape attribute value between a pair of category start- and end-tags. (As
with attribute value templates, an XSLT processor takes what the xsl:value-of
element hands it in its select attribute, evaluates it, and adds the result to the
appropriate place on the result tree.)

<!-- xq33.xsl: converts xq31.xml into xq32.xml. -->

<xsl:template match="wine">
 <wine vintage="{year}">

 <product><xsl:apply-templates select="product"/></product>
 <category><xsl:value-of select="@grape"/></category>

 <price><xsl:apply-templates select="price"/></price>
 </wine>

</xsl:template>

To convert an element to an attribute, the same template uses an attribute value tem-
plate—the curly braces around “year”—to put the source tree wine element’s year
subelement after vintage= in the result tree’s wine element.

Another great trick is selective processing of elements based on an attribute value.
Because an XSLT processor applies the most specific template it can find in the
stylesheet for each source tree node, it will apply the first template in the following
stylesheet for each wine element that has a value of “Cabernet” in its grape attribute,
and the second for all the other wine elements. (The [@grape='Cabernet'] part
that specifies this is a special part of a match pattern or XPath expression called a “pred-
icate.”) The first template copies the element, while the second doesn’t. The output
will therefore only have wines with “Cabernet” as their grape value.

16 CHAPTER 1 A BRIEF TUTORIAL

<!-- xq34.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:template match="wine[@grape='Cabernet']">
 <xsl:copy><xsl:apply-templates/></xsl:copy>

</xsl:template>

<xsl:template match="wine"/>

<xsl:template match="@*|node()|processing-instruction()|comment()">
 <xsl:copy>

 <xsl:apply-templates
 select="@*|node()|processing-instruction()|comment()"/>

 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

How useful is this? Think about the importance of a database system’s ability to
extract subsets of data based on certain criteria. The creation of such customized
reports can be the main reason for developing a database in the first place. The ability
to generate customized publications and reports from your XML documents can give
you similar advantages in a system that uses those documents, because the more you
can re-use the document components in different permutations, the more value the
documents have.

For related information, see
• chapter 2, “XPath,” on page 23 for more on the use of expressions in square

brackets (“predicates”) to filter out a subset of the nodes that you want
• section 3.5, “Converting elements to attributes for the result tree,” page 55
• section 3.8, “Deleting elements from the result tree,” page 63
• section 3.14, “Converting attributes to elements,” page 79

1.4 SUMMING UP THE TUTORIAL

So far, this brief tour has only given you a taste of XSL’s capabilities—yet we’ve
already covered the features that will let you do four-fifths of your XSLT work! We’ve
shown you how to:

• delete elements
• rename elements

• reorder elements

• delete attributes

• rename attributes

• convert elements to attributes

• convert attributes to elements

• process elements based on an attribute’s value

SUMMING UP THE TUTORIAL 17

These are the most basic changes that you’ll want to make when converting XML
documents that conform to one schema or DTD into documents that conform to another.
If data is shared between two organizations that designed their data structures indepen-
dently, those organizations probably have many types of information in common—after
all, that’s why they’re sharing it. Yet, it’s also likely that they assigned different names to
similar information, or ordered their information differently, or stored extra information
that the other organization doesn’t need (or hasn’t paid for!). XSLT makes most of these
conversions painless and quick.

Before moving on, let’s review what the XSLT processor is doing now that you’ve
seen it in action a few times. Imagine that an XSLT processor has just started process-
ing the children of the chapter element in the following document,

<book><title>Paradise Lost</title>

 <chapter><title>The Whiteness of the Whale</title>
 <para>He lights, if it were Land that ever burned</para>

 <para>With solid, as the Lake with liquid fire</para>
 </chapter>

<chapter><title>The Castaway</title>
 <para>Nine times the Space that measures Day and Night</para>

 <para>To mortal men, he with his horrid crew</para>
 </chapter>

</book>

and it’s using a stylesheet with the following two template rules to process it:

<!-- xq37.xsl -->

 <xsl:template match="title">
 Title: <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="chapter/title">

 Chapter title: <xsl:apply-templates/>
 </xsl:template>

(The match pattern “chapter/title” in the second template element shows that this
template rule is for the title elements that are children of chapter elements. The
first is for all the other title elements.) The diagram in figure 1.7 shows the steps
that take place. The chapter title’s content is the only text node shown in the source
tree; the rest are omitted to simplify the diagram.

18 CHAPTER 1 A BRIEF TUTORIAL

1 It finds the first child of the chapter element, a title element node.

2 It checks the stylesheet for a matching template rule. It finds two, and picks the
most specific one it can find.

3 Once it’s found the best template rule for the node, it gets the template rule’s
template to add to the result tree.

4 It adds the template, which consists of a text node (“Chapter title:”) and the
result of processing the template’s xsl:apply-templates element to the
title element’s lone text node child: the string “The Whiteness of the Whale.”

Of course, XSLT can do much more than what we’ve seen so far. If you’d like more
background on key XSLT techniques before you dive into stylesheet development, the
following sections of part 2, ”XSLT user’s guide: How do I work with...,” on page 21
of this book are good candidates for “Advanced Beginner” topics:

• chapter 2, “XPath,” on page 23

• chapter 3, “Elements and attributes,” on page 47

• section 3.6, “Copying elements to the result tree,” page 57

• section 5.1, “Control statements,” page 110

• section 6.1, “HTML and XSLT,” page 187

• section 6.5, “Non-XML output,” page 202

• section 6.6, “Numbering, automatic,” page 205

• section 6.9, “Valid XML output: including DOCTYPE declarations,” page 225

Figure 1.7 How the XSLT processor handles an element node

SUMMING UP THE TUTORIAL 19

If your stylesheet absolutely depends on these potentially unavailable elements, the
xsl:message element can do more than just output a message about the problem:
it can abort the processing of the source document with its terminate attribute.
(See section 5.4.1, “Runtime messages, aborting processor execution,” page 134, for
more on the use of xsl:message.)

