[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[eu_members at aclweb dot org] Semantic Role Labeling -- Book Announcement



BOOK ANNOUNCEMENT

Semantic Role Labeling

Martha Palmer (University of Colorado, Boulder)
Daniel Gildea (University of Rochester)
Nianwen Xue (Brandeis University)

Synthesis Lectures on Human Language Technologies #6 (Morgan & Claypool Publishers), 2010, 103 pages

Abstract

This book is aimed at providing an overview of several aspects of semantic role labeling. Chapter 1 begins with linguistic background on the definition of semantic roles and the controversies surrounding them. Chapter 2 describes how the theories have led to structured lexicons such as FrameNet, VerbNet and the PropBank Frame Files that in turn provide the basis for large scale semantic annotation of corpora. This data has facilitated the development of automatic semantic role labeling systems based on supervised machine learning techniques. Chapter 3 presents the general principles of applying both supervised and unsupervised machine learning to this task, with a description of the standard stages and feature choices, as well as giving details of several specific systems. Recent advances include the use of joint inference to take advantage of context sensitivities, and attempts to improve performance by closer integration of the syntactic parsing task with semantic role labeling. Chapter 3 also discusses the impact the granularity of the semantic roles has on system performance. Having outlined the basic approach with respect to English, Chapter 4 goes on to discuss applying the same techniques to other languages, using Chinese as the primary example. Although substantial training data is available for Chinese, this is not the case for many other languages, and techniques for projecting English role labels onto parallel corpora are also presented.

Table of Contents: Preface / Semantic Roles / Available Lexical Resources / Machine Learning for Semantic Role Labeling / A Cross-Lingual Perspective / Summary

http://dx.doi.org/10.2200/S00239ED1V01Y200912HLT006


This title is available online without charge to members of institutions that have licensed the Synthesis Digital Library of Engineering and Computer Science.  Members of licensing institutions have unlimited access to download, save, and print the PDF without restriction; use of the book as a course text is encouraged.  To find out whether your institution is a subscriber, visit <http://www.morganclaypool.com/page/licensed>, or just click on the book's URL above from an institutional IP address and attempt to download the PDF.  Others may purchase the book from this URL as a PDF download for US$30 or in print for US$40.  Printed copies are also available from Amazon and from booksellers worldwide at approximately US$40 or local currency equivalent.